Level - 1	DTS-3
-----------	-------

- **31.(D)** Sodium is soluble in Mercury Alloys. They have less activity as compared to sodium.
- **32.(A)** RbO₂ has Rb⁺ & O^{-1/2}. O^{-1/2} has one unpaired e⁻ in π^* 2p orbital.
- **33.(A)** KHCO₃ is more soluble than NaHCO₃ **34.(C)** Na₂CO₃ · 10H₂O $\stackrel{\Delta}{\longrightarrow}$ Na₂CO₃ + 10H₂O
- **35.(A)** Discharge potential of $H^+(aq) < Na^+(aq)$ **36.(B)** LiAlH₄ is strong H^- donor
- 37.(C) NaHCO $_3$ is very less soluble because the Lattice formed by HCO $_3^-$ fits Na $^+$ perfectly. So its lattice energy becomes high. But lattice of KHCO $_3$ is not as stable.
- **38.(C)** Ionic size and Atomic size increases down the group.
- **39.(B)** Ionization potential/Energy decrease down the group.
- **40.(B)** Metallic luster is caused by mobile e^- .
- **41.(C)** Discharge potential of H⁺(aq) < Na⁺(aq), using ordinary electrodes.
- **42.(B)** Polarizing power $\propto \frac{1}{\text{size of cation}}$ **43.(A)** Only Li₂CO₃ is unstable.
- **44.(B)** Only Li reacts with N_2 among alkali metals. **45.(B)** $M \cdot P \propto \text{Ionic strength}$.